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This paper describes the formulation of an advanced numerical model for the simulation of
high- and low-engine-order forced response for turbomachinery applications. The various
forced response mechanisms are explained in some detail and a speci"cation for an accurate
prediction system is discussed with emphasis on both #uid and structural modelling aspects.
The Favre-averaged Navier}Stokes equations are used to represent the unsteady #ow in
a nonlinear time-accurate fashion. Features such as turbulence modelling, boundary condi-
tions, meshing strategies and numerical treatments are discussed in detail. The structural model
is based on a linear modal model, though local nonlinearities due friction dampers can be
accommodated using an iterative scheme. The #uid mesh is moved at each-time step according
to the structural motion, so that changes in blade aerodynamic damping and #ow unsteadiness
can be accommodated. It is concluded that the model can be used for large simulations
involving multi-bladerow whole-annulus calculations. ( 2000 Academic Press
1. NATURE OF THE PROBLEM

THE FORCED RESPONSE OF BLADED DISKS, in both axial and radial #ows, is a very common
vibration problem during the development phase of new gas turbines. A primary mecha-
nism of blade failure is high-cycle fatigue (HCF) caused by vibrations at levels exceeding
material fatigue endurance limits. Preventing turbomachinery blade failures is a necessary
goal for engine manufacturers and, to this end, it is essential to prevent excessive vibration
in turbomachinery blading due to forced excitation. The current state-of-art design tech-
niques for estimating the forced response of turbomachinery blading are de"cient in terms
of predicting blade response levels quantitatively.

From the outset, it is appropriate to distinguish between two types of forced response.
The "rst type, or classical forced response, is due to the excitation forces generated by the
rotation of the bladed system past a pressure "eld, the strength of which varies periodically
with angular position around the turbine. Such #ow variations are mainly caused by the
stator blades which act as upstream obstructions, and the rotor blades experience their
wakes as time-varying forces with a frequency, or periodicity, based on the rotational speed.
The spatial distribution of the forcing function will primarily be determined by the number
of upstream stator blades and by its aliases with respect to the rotor blades. A Fourier
transform of this forcing function will reveal the harmonics that will excite the assembly
modes. Typically, such harmonics will excite high nodal diameter modes as their actual
order is related to the blade numbers in the rotor/stator row of interest. Although it is
di$cult to predict the corresponding rotor blade vibration levels accurately, turbo-
machinery designers rely on Campbell diagrams (or their variants) which indicate the
0889}9746/00/010087#15 $35.00/0 ( 2000 Academic Press
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likelihood of encountering forced response resonances of the "rst type within the operating
range. In principle, it is then possible to design the rotor wheels away from the primary
resonances, subject to being able to predict the dynamical behaviour of the assembly to
a required degree of accuracy.

The second type of forced response, far less studied in the open literature, is much more
di$cult to deal with as the controlling parameters and the exact excitation mechanisms
are poorly understood. However, the unsteady aerodynamic forcing function is known to be
composed of low-order harmonics as it is responsible for exciting low-order nodal diameter
assembly modes, hence the term &&low-engine-order'' (LEO) forced response. The main
characteristics of the LEO forced response can be summarized as follows.

(i) It occurs at high speed and temperature and is most severe in the HP turbine, though
it tends to persist throughout the engine. As will be discussed later, it is believed to be due to
some loss of symmetry in the #ow features.

(ii) It excites low nodal diameter fundamental blade modes which exhibit higher vibra-
tion levels. Hence, the likelihood of blade failure becomes high.

(iii) A large degree of response variability is observed from engine to engine. The same is
also true of the particular low-engine-order harmonic that produces the highest response in
a given nominal engine.

(iv) On rig tests, many of the highest measured responses in the running range are
observed to be due to LEO excitation. Such situations require expensive modi"cations in
relatively late stages of the design cycle. As the controlling mechanism is poorly understood,
the use of friction dampers to reduce the response levels is often the only route available to
the designer.

Forced response problems are not con"ned to turbine stages only. Some fans also
experience forced response problems due to the wakes created by the inlet guide vanes
(IGVs) and similar upstream obstructions. The situation is very similar to blade-passing
excitation but the aerodynamic forcing may become very complex when IGVs have variable
angles (Sayma et al. 1999). As for turbines, fans also su!er from low-engine-order excitation
which usually arises from inlet distortions. Cross-wind e!ects and the intake geometry can
also be very signi"cant factors.

A detailed overview of turbomachinery aeroelasticity methods, including forced response
prediction techniques, is discussed by Marshall & Imregun (1996). A brief summary will also
be given here. Early studies were based on classical forced response models for cascades of
#at plates which used wake coe$cients. These were usually scaled to some arbitrary
constant so that representative response levels could be obtained (Whitehead 1970;
Nagashima & Whitehead 1977). Such models are also capable of handling potential
disturbances. Erdos & Alzner (1977) were among the "rst researchers to investigate
transonic cascade and blade number e!ects. Linearized models (Hall & Clark 1991; Holmes
& Chuang 1991) have also been used to predict forced response. These methods solve the
linearized "eld equations (potential or Euler) to obtain the unsteady pressures acting on the
blade due to the incoming disturbances. In any case, the state of the art is to solve the fully
nonlinear Euler or Navier}Stokes equations for the blade-row of interest, and to simulate
the disturbance (wake or potential) moving past at blade passing velocity. Hodson (1985)
and Giles (1988a) used the inviscid Euler equations to predict wake}rotor interaction.
Similar work is also reported by Fransson & Pandol" (1986) and Gerolymos (1988). A full
stator}rotor interaction model using Navier}Stokes equations was developed in 2-D by
Giles (1990b), and in 3-D by Rai (1987b). Results from some of the models above are
compared with experimental data in the paper by Manwaring & Wisler (1992). A study of
varying the blade numbers is reported by Korakianitis (1988). The paper by Chiang & Kielb
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(1992), which presents an industrial forced response prediction system, also reviews much of
the research in this area.

2. SPECIFICATION FOR A FORCED RESPONSE SYSTEM

Previous forced response studies have almost exclusively dealt with classical blade-passing
forced response. However, from the above description, it is clear that a forced response
prediction capability should be able to deal with both high and low-engine-order excitation.
In any case, a forced response prediction system should consist of four parts: (i) #ow defect
modelling including intake distortion and cross-wind, (ii) unsteady aerodynamic modelling
for gust response and aerodynamic damping, (iii) representative structural modelling,
including nonlinear friction damping behaviour, and (iv) aeroelastic solution for the
response of #exible blades.

One of the most important parts of a forced response system is an accurate and e$cient
#ow solver which should possess the following features: (a) the ability to model three-
dimensional #ows and e!ects such as end-wall, tip leakage, etc., as these can contribute
signi"cantly towards the three dimensionality of the #ow; (b) the ability to model both up-
and down-stream pressure waves and their interactions; (c) the ability to model viscous
e!ects from wakes, as they can contribute signi"cantly towards the unsteady component of
the #ow; and (d) the ability to allow accurate transfer of information from one grid to
another when multiple grids are used.

Most existing models are based on calculating the unsteady forces from the upstream and
downstream distortions, independently of the blade's motion. The contribution of the blade
vibration to the unsteady forces is usually calculated separately. The (positive) aerodynamic
damping from the blade displacement is added to the (negative) contribution from the
unsteady forcing to obtain the overall blade response. The advantage of performing forced
response calculations in a coupled manner is that both the forcing and vibration e!ects
are allowed to interact with each other, in an integrated fashion. There is experimental
evidence that the unsteadiness due to blade motion can be signi"cant (Manwaring et al.
1996). The current study is one of the "rst attempts at this kind of prediction.

3. SOURCES OF UNSTEADINESS

It is now appropriate to outline the sources and nature of various unsteady phenomena that
are present in rotor}stator interactions. In the main, there are two sources of unsteadiness
due to the relative motion of the stator and rotor rows, as follows.

(i) =ake/rotor interaction: The stator wakes, which can be assumed to be approximately
steady in the stator frame of reference, are unsteady in the rotor frame of reference since the
rotor is moving through them. Although the generation of the stator wakes is a viscous
phenomenon, their subsequent interaction with the rotor blades is primarily an inviscid
process. Therefore, it may be possible to perform an unsteady inviscid computation for the
rotor domain, with the wakes being speci"ed as unsteady in#ow conditions obtained from
a previous viscous calculation. However, the preferred approach is to perform a single
viscous calculation for both domains.

(ii) Potential stator/rotor interaction: The unsteadiness can be explained by considering
the three components of the pressure in the region between the stator and rotor bladerows:
(i) uniform and steady, (ii) nonuniform but steady in the rotor frame, and (iii) nonuniform
but steady in the stator frame. With rotation, both the stator and rotor blades experience
unsteady forces that are due to the nonuniform pressure components. Such an interaction is
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purely inviscid and can be modelled via the Euler equations. However, there is a need to
consider the rotor and stator domains together when the spacing between the stator and
rotor rows is small since the de"nition of unsteady rotor inlet boundary conditions will be
very di$cult in such cases.

The above sources of unsteadiness occur at blade-passing frequencies and excite the high
nodal diameter assembly modes. Equally critical are the low-engine-order harmonics which
are produced by the general unsteadiness of the #ow throughout the engine. Industrial
experience suggests that any loss of symmetry might give rise to such harmonics which are
responsible for low-engine-order forced response. The following parameters are thought to
be the most signi"cant ones: inherent nonuniform spacing of the stator blades (also known
as throat width variation), #ow exit angle variations, axial gap changes between the rotor
and stator blades, density variation due to combustion e!ects, combinations of blade
numbers through several stages, nonsymmetric #ows and temperature distributions due to
burner blockages.

4. GENERAL FLOW MODELLING CONSIDERATIONS

The nature of the #ow in modern turbomachines is complicated due to the co-existence of
subsonic, supersonic and transonic regions in addition to shock waves and shock}bound-
ary layer interactions. The situation is further compounded by the presence of acoustic
waves which may cause acoustic resonances. Although much of the design work is based on
the steady-state #ow features at some nominal speed, the understanding of the unsteady
#ow is perhaps more important because of aeroelasticity considerations. Flutter and forced
response, both part-speed phenomena, remain serious problems for engine integrity. In any
case, a realistic simulation of turbomachinery aeroelasticity requires a time-accurate vis-
cous representation of the unsteady compressible #ow, a route which is computationally
very expensive.

In recent years, the rapid development of numerical methods for the solution of the #ow
equations and the availability of powerful computers led to various prediction systems
(Dawes 1988; Arnone 1995). Although external #ow applications are dominated by unstruc-
tured grids (Barth 1990, 1991; Peraire et al. 1992; Venkata 1995; Mavriplis 1995; Frink
1996), most turbomachinery methods still use structured grids (Dawes 1988; Rai 1987a; Rai
et al. 1990; Arnone 1995). While unstructured grids provide #exibility for discretizing
complex geometries, they have the drawback of requiring larger in-core memory and more
CPU e!ort than their structured counterparts.

However, the requirement to include complex geometric features such as tip gaps, cooling
holes, snubbered fan blades, nonsymmetric intake ducts, struts, etc., can only be met via
unstructured grids. Due to grid generation di$culties and #ow solver limitations, unstruc-
tured grids generally use tetrahedral elements, even for turbomachinery applications
(Vahdati & Imregun 1996). Although such grids are relatively easy to generate and e$cient
for capturing the inviscid features of the #ow, the situation becomes more complicated in
boundary layers, where large aspect ratio cells are required for computational e$ciency.
The gradients normal to the walls are several orders of magnitude larger than those along
the walls; thus, more grid points are required in the former direction than the latter.

Such considerations led to the development of hybrid grid models where hexahedral or
prismatic cells can be used in the boundary layers and tetrahedral and prismatic cells can be
used to "ll the domain away from the walls. For turbomachinery blades, Sbardella et al.
(1997) presented a method to generate hybrid semi-structured grids where the boundary
layers are "lled with hexahedral cells and the rest of the domain is "lled with triangular
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prisms. Such a route not only provides a very e$cient spatial discretization over standard
unstructured grids but it also provides, for a comparable number of points, a much better
grid quality over its fully structured counterparts. The same discretization strategy will also
be used here.

5. THE FLOW MODEL

The unsteady, compressible, Favre-averaged Navier}Stokes equations for a 3-D blade-row
can be cast in terms of absolute velocity u but solved in a relative non-Newtonian reference
frame rotating with the blade about the x

1
-axis with angular velocity u. This system of

equations, written in an arbitrary Eulerian Lagrangian (ALE) conservative form for a con-
trol volume X with boundary C, takes the form
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n represents the outward unit vector of the control volume boundary C. The viscous term
G on the left-hand side of equation (1) has been scaled by the reference Reynolds number for
nondimensionalization purposes. The solution vector of conservative variables U is given
by
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represents the Kronecker delta function and v is the velocity in the relative frame
of reference. The pressure p and the total enthalpy h are related to density o, absolute
velocity u and internal energy e by two perfect gas equations:
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The viscous stress tensor p
ij

is expressed using the eddy viscosity concept which assumes
that, in analogy with viscous stresses in laminar #ows, the turbulent stresses are propor-
tional to the mean velocity gradients:
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k
l
represents the molecular viscosity given by the Sutherland's formula, k

t
denotes the

turbulent eddy viscosity, which must be determined by a suitable turbulence model.
Therefore, k"k

l
#k

t
is the total viscosity of the #uid. The value of j is given by the Stokes

relation j"!2
3
k while the laminar Prandtl number, Pr

l
, is taken as 0)7 for air. The

turbulent Prandtl number, Pr
t
, is taken as 0)9.

The term S in equation (1) is given by
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The eddy viscosity k
t
is calculated using the one-equation turbulence model of Baldwin

& Barth (1991), though other one and two-equation turbulence models are also available in
the aeroelasticity code used for this work.

6. NUMERICAL METHODOLOGY

The three-dimensional spatial domain is discretized using unstructured grids which, in
principle, can contain cells with any number of boundary faces. The solution vector is stored
at the vertices of the cells.

The present work uses semi-structured grids for their computational e$ciency, although
the solver is written for general hybrid unstructured grids. To achieve further computa-
tional e$ciency, the mesh is represented using an edge base data structure. In this approach,
the grid is presented to the solver as a set of node pairs connected by edges. The edge
weights representing the inter-cell boundaries are computed in a separate pre-processor
stage. Consequently, the solver has a uni"ed data structure for which the nature of the
hybrid mesh is concealed from the main calculation loops.

The #ow model will now be explained in more detail. For clarity, the numerical
discretization of the #ow equations will be illustrated on a 2-D mesh. However, the resulting
formulation is equally applicable to 3-D cells. Using an edge-based scheme, the typical 2-D
mesh of Figure 1 can be discretized by connecting the median dual of the cells surrounding
an internal node. For internal node I, the semi-discrete form can be written as
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where X
I

is the area of the control volume (shaded area in Figure 1), U
I

is the solution
vector at node I, n

s
is the number of sides connected to node I, FIJ

s
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numerical inviscid and viscous #uxes along side IJ
s
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is the boundary integral. The
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times their normals. For example, the weight of the side connecting nodes I and J
1

is given
by
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In 3-D discretization, the resulting weights are the summation of the areas times their
normal over the cell faces resulting from connecting the centroids of the cells and the middle
points of the sides. The four-sided areas, resulting in hexahedral and prismatic cells, are
calculated by dividing them into triangular faces in a consistent manner for the neighbour-
ing cells such that the conservation property is assured. The resulting numerical scheme is
second-order-accurate in space for tetrahedral meshes. For prismatic and hexahedral cells,
the scheme is still second-order-accurate for regular cells with right angles. In the worst case
of a highly skewed cell, the scheme will reduce to "rst-order accuracy (Essers et al. 1995).
However, hexahedral meshes are usually generated in boundary layer where the generation
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of regular cells to ensure orthogonality is relatively straightforward. Similarly, prismatic
cells are usually generated in a structured manner by projecting triangular meshes on radial
layers and then connecting them. Highly skewed meshes are unlikely to occur in such
situations.

6.1 INVISCID FLUXES

The inviscid #uxes in equation (8) are expressed using a central di!erence formulation with
a suitable arti"cial dissipation which is required to stabilize the scheme. Thus, inviscid
#uxes can be written as
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whereDIJ
s
is the arti"cial dissipation along the side IJ

s
. The arti"cial dissipation is based on

an upwind scheme developed by Swanson & Turkel (1992), and Jorgenson & Turkel (1993).
The scheme consists of a mixture of second- and fourth-order arti"cial viscosity. The
fourth-order terms ensure the stability of the scheme in smooth #ow regions The second-
order terms are required to damp numerical oscillations in the vicinity of discontinuities
where the scheme reverts to "rst order using a pressure-based sensor. The arti"cial
dissipation can be written as:
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is the standard Roe matrix (Roe 1981), e
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with u+0)5; /
Js

can similarly be obtained from equation (14) by substituting Js for I.

6.2. VISCOUS FLUXES

The viscous #uxes are treated within the same edge-based data structure framework,
provided the gradients of the primitive variables are known at the mesh nodes. Using the
edge weights of equation (9), these gradients can be calculated from the formula
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where h represents a generic primitive variable and B
i
is the boundary integral arising from

the contributions of the boundary faces at the domain boundaries. This formulation results
in a viscous #ux scheme which uses information from two layers of points surrounding the
point under consideration. The choice of this scheme is purely for computational e$ciency
and storage economy. The use of a "nite element approach will require the storage of nine
additional quantities per side. In any case, numerical experiments show that there is
a negligible di!erence between the two approaches.

6.3. IMPLICIT TEMPORAL DISCRETIZATION

Equation (8) can be expressed in the form
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A second-order implicit backward time integration of equation (16) can be expressed as
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where n denotes the time level. The implicit nonlinear system of equations given by equation
(17) needs to be solved at every time-step. An iterative equation is constructed from
equation (17) by simply adding a pseudo-time derivative term Uq to the left-hand side,
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Indicating with Um the mth approximation to Un`1, equation (18) can be re-written as

Xn`1
I A

1

Dq
#

3

2

1

DtB DU
I
#

3Xn`1
I

Um
I
!4(XU)n

I
#(XU)n~1

I
2Dt

"Rm`1 , (19)

where DU
I
"Um`1

I
!Um

I
, Dq representing the pseudo-time-step. Linearizing the right-

hand side of equation (19) around Um
I
, the pseudo-time integration which advances the
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solution from tn to tn`1 becomes
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where En
I
involves the portion of the physical time derivative at previous time-steps and is

invariant during the iteration process:
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The left-hand side of equation (20) contains a portion of the physical-time derivative in
order to reduce the pseudo-time-step in regions of the #ow where the ratio pseudo/physical
time-step, Dq/Dt, becomes large (Melson et al. 1993). Equation (20) is solved iteratively until
the term DU

I
is driven to a speci"ed small tolerance. Within this iteration level, a Jacobi

sub-iteration procedure is performed to solve the linearized system of equations described
by equation (20).

Time accuracy is guaranteed by the outer iteration level where the time-step is "xed
throughout the solution domain, while the inner iteration procedure can be performed
using traditional acceleration techniques such as local time-stepping and residual
smoothing.

6.4. BOUNDARY CONDITIONS

This section describes the numerical treatment of the in#ow and out#ow boundaries for
turbomachinery #ow calculations. Whereas the far-"eld boundaries for isolated aerofoils
can be taken many chords away, the boundaries are typically less than one chord away for
most turbomachinery applications. This situation may lead to computational inaccuracies
if the boundary conditions are not suitably formulated. Various techniques have been
developed to minimize the re#ection of the outgoing waves (Engquist & Majda 1977;
Higdon 1986; Ferm 1995; Giles 1990a) and an overview is given by Givoli (1991). Here two
di!erent set of treatments, one for steady-state computation and the other for unsteady
computation, are used. The steady-state boundary treatment is based on the characteristics
of the Euler equations. In particular, the steady-state boundary conditions are obtained
from the linear, harmonic unsteady nonre#ecting boundary conditions, as a limiting case of
zero-frequency unsteadiness. The resulting nonre#ecting boundary conditions are exact for
linear solutions at the far-"eld boundary. The treatment of such boundary conditions for
2-D turbomachinery applications can be found in Giles (1988b). An extension to 3-D is
reported by Giles (1990a).

Two further types of boundary conditions are needed for turbomachinery calculations:
solid wall and periodicity. On solid walls, the pressure is extrapolated from the interior
points and the slip (inviscid) or no-slip (viscous) conditions are used to compute the other
quantities. An extra boundary condition for the heat #ux is employed for viscous #ow
calculations. Using the edge-based data structure, the periodicity is handled in a straightfor-
ward way as long as the points in the two periodic boundaries are located at same axial and
radial coordinates.

6.5. TREATMENT OF THE SLIDING BOUNDARIES

From a computational point of view, one major di$culty in simulating rotor}stator #ows
arises because of the relative motion between the rotor and stator blades. One of the most
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sThe nonlinear behaviour due to the presence of the friction dampers will be studied in a separate section.

straightforward solutions to this problem is to use two grids that move relative to each
other. Typically, one would use a stationary grid to discretize the stator blades and
a moving grid (stationary with respect to the rotor) to represent the rotor blades. For
a given rotation between the stator and the rotor blade-rows, the #ow solution at the
interface must be determined. In the procedure used here, the solution is updated at the
interface in a conservative manner by linearly interpolating the variables in the stator
computational domain to obtain rotor #uxes, and in the rotor computational domain to
obtain the stator #uxes. The #uxes are computed by using a characteristic technique which
allows the correct propagation of the information and the interface is updated at the end of
each time-step. In other words, #ow data are exchanged between the two grids via specially
formulated boundary conditions at the interface. Numerical experience indicates that the
current implementation, based on the formulation of Rai (1986) is numerically stable,
spatially and temporally accurate, and conservative so the #ow discontinuities can move
from one grid to another without causing distortions.

7. STRUCTURAL MODEL

From the outset, it should be stressed that the dynamic behaviour of the bladed-disk
structure is nonlinear since it includes a large number of friction dampers. Further,
structural nonlinearities include snubbers, shroud interfaces and large amplitude motion.
For a nonlinear structure, the most general approach would be the formulation and the
direct time integration of the mass, sti!ness and damping matrices, using the physical
coordinates as the dependent variables. The aerodynamic load vector at each time-step
would then be obtained by interpolating the #uid pressure onto the structural grid, the
nodal forces being computed from the product of this pressure by the corresponding area.
New positions and velocities of each structural node could be interpolated back onto the
#uid grid, to obtain its new position and velocity for the next time-step. However, the
calculation of the aeroelastic motion by this method would be computationally very
expensive, and a formulation that can reduce the computational e!ort is highly desirable.
For a linear structure, such an aim can easily be achieved by uncoupling the structural
equations of motion by a coordinate transformation via the mode shape matrixs. For the
linear part of the system, the reduced modal equations can be solved by time- marching,
with the modal matrix providing the link between the principal coordinates in the equation
of motion (EOM) and the physical coordinates of the structure. The mode shape vectors can
then be interpolated onto the aerodynamic grid points at the start of the calculation.
Although no further interpolation is required, the mesh is still moved at each time-step to
accommodate the aeroelastic motion, a feature that will be discussed later. Assuming, for
the time being, that the structure is linear, the aeroelastic EOM can be written as:

[M]MxK N#[C]MxR N#[K]MxN"Mp (t)nN , (22)

where M, C, K are the mass, structural damping and sti!ness matrices, x is the mode shape
vector, p (t) is the pressure and n is the normal unit vector on the blade surface. The free
vibration problem can be solved to yield natural frequencies, u

i
, and the mass-normalized

mode shape matrix [U]. The centrifugal sti!ening e!ects are taken into account by adding
the appropriate terms to the sti!ness matrix. Equation (22) is usually solved for a typical
sector, which also includes the disk for turbine cases. The mode shapes of the full assembly
are then obtained by expanding the cyclic symmetry mode shapes. Many such typical sector
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analyses are performed to cover all assembly modes of interest. The required coordinate
transformation is

MxN"[U]MqN , (23)

where q is the vector of the principal or modal coordinates. Using equations (22) and (23)
and pre-multiplying by [U]T:

[U]T[M][U]MqK N#[U]T[C][U]MqR N#[U]T[K][U]MqN"[U]TMp(t)nN . (24)

The structural equations of motion can be reduced further by removing both the coordi-
nates and modes that are of no interest in the #utter calculations. Assuming proportional
damping (without loss of generality) and using the orthogonality properties of the system
matrices with respect to the mode shape matrix, one obtains

MqN
N
#[diag(2f

i
u

i
)]N]N MqR N

N
#[diag(u2

i
)]N]NMqN

N
"[U]Tm]NMp (t)N

m
"[P (t)]

N
, (25)

where u
i
and f

i
are the natural frequency and modal damping for mode i, N is the number of

structural coordinates and m is the number of modes.
The right-hand-side vector of modal forces is formed as follows:

P (t)"[U]TMP(t )nN"GA
n
a

+
i/1

p
i
/
i,rB 'niHr"1,m

, (26)

where n
a
is the number of aerodynamic nodes on the blade surface.

In this form, the equations of motion can be solved by any standard numerical integra-
tion scheme and the self-starting, second-order-accurate and unconditionally stable New-
mark discretization (Newmark 1959) was used in the current work.

7.1. MESH MOVEMENT

When undertaking a forced response aeroelasticity analysis, it is desirable to move the #uid
mesh according to the instantaneous position of body under consideration so that the blade
vibration can be included in the calculations. This requirement is met by using an algorithm
which considers the mesh as a network of springs whose extension/compression is pre-
scribed by the mode shape at the blade surface and becomes zero at the far "eld. At each
node, the spring sti!nesses are allocated values that are inversely proportional to the length
of the shared edge lengths. The CFD algorithm takes full account of the unsteady #uxes
which arise due to cell volume changes at each time-step.

7.2. FRICTION DAMPERS

One way of minimizing the resonant response is to introduce additional damping. Very few
solutions exist at high temperatures but friction or underplatform dampers provide a robust
means of preventing the vibration levels from reaching high amplitudes. Friction dampers
are small pieces of metal loaded on the underside of adjacent blade platforms by the
centrifugal force. A most common type, the so-called cottage roof damper, is shown in
Figure 2. The basic idea is to maximize the friction area for increased energy dissipation.
The assumed elliptical path of the friction contact is shown in Figure 3. If the damper mass
is too small, the friction force will not be large enough to dissipate su$cient energy. On the
other hand, a large mass will limit the relative motion, again decreasing the damping
properties. From such considerations, it is clear that, for a given geometry and relative
motion, there will be an optimum size which will yield maximum energy dissipation. Due to



Figure 2. Under-platform cottage-roof dampers between adjacent blades [from Sanliturk et al. (1999)].

Figure 3. Assumed elliptical path of the friction contact [from Sanliturk et al. (1999)].
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strong nonlinear behaviour, the theoretical analysis and the optimization of friction
dampers is a di$cult topic but major advances have been made in the last "ve years
(Sanliturk & Ewins 1996, 1997; Sanliturk et al. 1999; Yang & Meng 1997).

Friction dampers are usually characterized by their force}displacement hysteresis loops,
the determination of which is based on a mixture of analytical and experimental techniques.
Under some simplifying assumptions, it is possible to derive expressions for the damper
forces and use experimentally derived coe$cients.

With the inclusion of the damper forces M f
FD

(x)N, equation (22) becomes

[M]MxK N#[C]MxR N#[K]MxN"Mp (t)nN#M f
FD

(x)N . (27)

A frequency domain solution of equation (27) is discussed in some detail in Sanliturk et al.
(1997). In the time-domain scheme employed here, the friction damper forces are computed
using the same formulation and they are added to the aerodynamic forces.

A major di$culty arises when performing forced response calculations with friction
dampers, as such devices may change the resonant frequency by as much as 15%.
A straightforward solution would be to sweep the speed range by performing separate
calculations at each point. The problem is further compounded by the fact that aerodynamic
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boundary conditions are rarely available at all speeds of interest. Given the impracticalities
of using a nonlinear time-marching code in this fashion, some iterative procedure needs to
be employed to track the resonance. Such a route was adopted here.

8. CONCLUDING REMARKS

The following concluding remarks may be made.

(i) An advanced numerical model for the forced response analysis of turbomachinery
blades was presented. The model, which uses nonlinear representations for both the
structure and the #uid, can deal with turbine and compressor-forced response arising from
low- and high-engine-order harmonics.

(ii) The #ow discretization is via unstructured hybrid grids and the solver has an edge-
based data structure. Implicit dual time stepping is employed for time-accurate viscous
unsteady #ows.

(iii) The structural model is based on a linear modal model, though local non-linearities
due friction dampers can be accommodated using an iterative scheme. Numerical experi-
ence indicates the time integration is impracticable with large mass, sti!ness and damping
matrices.

(iv) The generality of the numerical model will allow the direct simulation of blade
mistuning. however, the objective of such investigation should be to relate statistical
properties of blade mistuning to those of the ensuing response. A detailed study of
a particular mistuning pattern is likely to be less useful, other than perhaps, for the
validation of a perturbation-type analysis.

(v) The blade motion may change both the aerodynamic damping and the #ow unsteadi-
ness. The proposed approach is using moving meshes, such that such features are automati-
cally included in the analysis.

(vi) The model is found to be computationally e$cient and, as will be shown in the
second part of the paper, it enables to undertake large unsteady viscous #ow simulations
with current computing power.

(vii) Parallelization on distributed memory machines is currently in progress and it is
expected that whole-annulus multi-blade-row computations will become commonplace
before the end of the century.
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